
Sweeper Programmability Overview

December 1995

Distribution: Public

© Microsoft Corporation, 1995. All Rights Reserved.

DRAFT
This document provides a high level description of the OLE Automation interfaces supported in Sweeper.

Introduction
Issues, Ideas, and Notes..............................................................................................................

Scenarios
Scenario 1: Client Side Web Crawler.........................................................................................

Example Script....................................................................................................................
Scenario 2: Object Interacting with Its Host Page.....................................................................
Scenario 3: Automated Information Retrieval...........................................................................
Scenario 4: Browser Automation...............................................................................................
Scenario 5: Integration with Non-Internet Applications............................................................

Design Overview
Appendix A: Assigned GUIDs

NOTE: THIS DOCUMENT IS AN EARLY RELEASE OF THE FINAL SPECIFICATION. IT IS 
MEANT TO SPECIFY AND ACCOMPANY SOFTWARE THAT IS STILL IN DEVELOPMENT. 
SOME OF THE INFORMATION IN THIS DOCUMENTATION MAY BE INACCURATE OR MAY 
NOT BE AN ACCURATE REPRESENTATION OF THE FUNCTIONALITY OF THE FINAL 
SPECIFICATION OR SOFTWARE. MICROSOFT ASSUMES NO RESPONSIBILITY FOR ANY 
DAMAGES THAT MIGHT OCCUR EITHER DIRECTLY OR INDIRECTLY FROM THESE 
INACCURACIES. MICROSOFT MAY HAVE TRADEMARKS, COPYRIGHTS, PATENTS OR 
PENDING PATENT APPLICATIONS, OR OTHER INTELLECTUAL PROPERTY RIGHTS 
COVERING SUBJECT MATTER IN THIS DOCUMENT. THE FURNISHING OF THIS 
DOCUMENT DOES NOT GIVE YOU A LICENSE TO THESE TRADEMARKS, COPYRIGHTS, 
PATENTS, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

© Microsoft Corporation, 1995. All Rights Reserved.



Sweeper Programmability Overview Page 2

Introduction
This document provides an complete overview of the Sweeper Programmability Model; a set of OLE Au-
tomation compatible1 objects that allow  Open Scripting script writers, OLE Controls, web crawlers, and 
just about anything else you can think of to easily automate their access to the Internet.  There are several
components to the overall sweeper programmability interface, each of which is discussed in a separate 
document in complete detail.  The components (and their related documents) are:

Component Description Specification Filename
The HTML Object.  This component provides an OA 
compatible set of interfaces for navigating through an 
HTML document.   This object is implemented on the 
same object as the HTML DocObject.

HTML Programmability Model.doc

The IExplorer Frame Object.  This component is the 
IExplorer 3.0 frame, which hosts the HTML DocObject
as well as other DocObjects.  The programmability in-
terface for this frame allows a script writer to execute 
methods like Forward, Back, as well as to access the 
History and Favorites lists.

IExplorer Frame Programmability Model.doc

The Win96 Shell Folder Object.  Conceptually this is 
the same thing as the IExplorer frame, except that this 
is the Win96 shell code.

Win96 Shell Folder Object.doc
(does not exist yet)

In addition, the following documents are relevant to this model:

Component Description Specification Filename
HTML Extensions for COM Objects.  In order to host 
OLE Controls and other COM objects in HTML, an ex-
tension to the HTML language is required.  This docu-
ment specifies such an extension (the "EMBED" tag).

HTML Extensions for COM Objects.doc

This document, and it's accompanying documents, uses the term programmability model to describe the sets of objects de-
scribed here, including the interfaces, methods, and properties found on those objects.  The term "object model" has been 
used in the past (by Office) to describe the same thing (e.g. the Excel Object Model).

All interfaces defined in the Sweeper Programmability Model are "dual"2.  This means that they inherit 
from IDispatch and follow some simple rules and thus can be used by late-bound OLE Automation con-
trollers (via IDispatch::GetIdsOfNames and IDispatch::Invoke) as well as by clients that "early-bind" (e.g. use a 
vtable).   Early-bound clients well not only get significantly better performance, but will also be able to 
enjoy the simplicity and features of the COM programming model (versus having to deal with calling 
through IDispatch).  We use the naming convention of prefixing the name of the interface with "D" (as op-
posed to "I") to indicate that the interface is a dual interface.

Issues, Ideas, and Notes
¨ Controls in HTML should be able to access the HTML object via the IOleClientSite::GetContainer.   This gives an Internet aware

control the opportunity to have full access, programmatically, to it's containing document..

Scenarios
The design of the Sweeper programmability model is driven by a set of usage scenarios.  These scenarios 
are outlined below.

1  It is critical to understand that the importance of OLE Automation is the ability for high-level languages to call on functionality 
of components in a manner that is natural (read easy for) the high-level language programmer.  Originally OLE Automation 
achieved this through the late binding mechanism of  IDispatch::Invoke, but with the invent of "dual" interfaces high-level program-
ming languages, such as VB 4.0, can access objects via good 'ole (pun intended) COM interfaces, while preserving all the benefits 
those "VB Programmers" are used to.  Hence this proposal defines all interfaces as dual.

2  See page 707 of Inside OLE Second Edition or the Win32® SDK documentation for details of "dual" interfaces.

© Microsoft Corporation, 1995. All Rights Reserved.



Sweeper Programmability Overview Page 3

Scenario 1: Client Side Web Crawler
In this scenario an ISV wants to write a Web Crawler application that runs on the client site, and uses the 
programmability interface to drive navigate across the web and search for/collect information.  The 
crawler would start with a list of "staring URLs" and recursively burrow into the net, using the links 
found on pages it encounters to further the search.  For this to work the crawler has to be able to 
· Search an HTML page for specific text
· Search an HTML page for hyper links
· Specify a URL to jump to

Example Script
The script below demonstrates, naively, how this would work.  Note that in reality, the example below 
would probably be much more complex (for example it would probably want to restrict the recursion to 
URLs that are in the same domain as the start URL).

Dim foundList As Collection
Dim searchedList As Collection
Sub StartCrawl

' In this example we just have one starting point, but there could be a list
Set foundList = New Collection
Set searhcedList = New Collection
Crawl("http://www.microsoft.com")

End

Sub Crawl(url As String)

' Have we already found this URL
Set found = foundList.Item(url)
If IsObject(found) Then Goto TheEnd:

' Have we already searched this URL
Set found = searchedList.Item(url)
If IsObject(found) Then Goto TheEnd:

Set htmlObj = GetObject(url) ' Assumes VB's GetObject is updated to take a URL
searchedList.Add(url,url)
If htmlObj.Find("Component Object Model") Then

foundList.Add(url,url)
End If

' Recurse links found on this page (depth first: the stuipd way, but it gets the point across)
For Each link In htmlObj.HyperLinks

Crawl(link.URL)
Next Link

TheEnd:
End Sub

Scenario 2: Object Interacting with Its Host Page
In this scenario, an OLE Control, or other COM object that is part of the content of a page wishes to in-
teract with the rest of the contents of the page. One reason for doing this would be to have a control that 
"read" (as in voice synthesis) the contents of the page to the user.
Another, more realistic example would be a "combo box" control that automatically filled itself with the 
list of H1 (top level headings) tags and allowed the user to select a chapter.  This control would be placed
in a non-scrolling region of the page (maybe even on a frame).   When the user selected an item in the 
combo box, the control would tell the browser to scroll the selected heading to the top.
The requirements raised by this scenario include:
· Browsers need to provide embedded objects access to the HTML object.  This probably means the 

browser supports an automation interface on it's container object (accessible to the object via 
IOleClientSite::GetContainer)

© Microsoft Corporation, 1995. All Rights Reserved.



Sweeper Programmability Overview Page 4

· The HTML programming model must allow specific tag types to be enumerated out of a page.
· The programming model must allow clients to force the browser to scroll (and select).
If the object was written in Visual Basic®, the code that filled the combo box might look like this:

Set H1Tags = htmlObj.EnumTag("H1")
For Each H1 in H1Tags 

comboBox.AddObject(H1)  ' Assume the combo box in question supports this
Next H1

Once the user selects an item in the combo box, the object needs to jump to the correct tag:
Sub OnComboSelChange

htmlObj.ScrollToTop(comboBox.GetCurSel)
End Sub

Note that this example is also valid for scripts embedded in a page. That is, instead of having the combo 
box do the work, a script on the page would do it…  The requirements are the same, however.

Scenario 3: Automated Information Retrieval

Scenario 4: Browser Automation
¨ This applies to the interaction between the DocObject and the frame.

Script writers want to be able to write scripts that automate the browser frame.  Such a script would want 
to "go forward", "go back", size the window, show/remove the toolbar, and so forth.  
One scenario is a script embedded in an HTML document that provides a button to the user saying "This 
page looks best when the browser is maximized.  Press here to maximize the browser window."  Rude, 
but somewhat interesting.
Here's an example that might be found in a VB 4.0 application. In this scenario, the application auto-
mates the navigation of the browser for the user, replaying all the links the user visited, scrolling through 
each page, and pausing before jumping to the next page.

Dim ie As DIExplorer
Sub StartIExplore_Click

Set ie = New Microsoft.IExplorer.1 ' When the user clicks on the StartIExplore button
ie.Open URL := "http://www.wsj.com" ' IExplorer starts, and he can browse around

End Sub

Sub DoSlideShow_Click ' Later, after the user's navigated around a bit
For Each hist In ie.History ' he can click the "DoSlideShow" button and replay

ie.Navigate HLink := hist ' where he's been
Wait 1000

Next hist 
End Sub

Sub Next_Click
ie.GoNext

End Sub

Sub Back_Click
ie.GoPrevious

End Sub

Sub Home_Click
ie.GoHome

End Sub

Scenario 5: Integration with Non-Internet Applications
Applications that want to support the Internet, but cannot afford to implement the full suite of Internet in-
tegration technologies (hyperlinks, URL monikers, etc.) would like to be able to simply launch the Inter -
net Explorer and give it a URL to start with.  The user can then navigate around the Internet.  When the 

© Microsoft Corporation, 1995. All Rights Reserved.



Sweeper Programmability Overview Page 5

user is done he closes IExplorer.  Or he can "Go Back" (as many times as he jumped).  Either way he 
ends up in the app he started in.   People do this today with Netscape's OLE Automation and DDE inter-
faces.

Design Overview
· History Object?  Should be able to get at history at any level.  
· Access to Browse Context?  Why?
Below is the Sweeper ODL file.  The contents of the box below is made up of content linked from all the 
other documents.  This ODL file has been tested with MkTypLib and correctly generates a Type Library.

//===============================================
// Sweeper Type Library Discription
// Copyright (c) 1995 Microsoft Corporation
// All Rights Reserved.
//===============================================
[

uuid(0002DF00-0000-0000-C000-000000000046),
 version(1.0),
 helpstring("Microsoft Internet Programmabilty Model Object Library")
]
library MSInternetLib
{
importlib("stdole32.tlb");
importlib("OLEPRO32.DLL");

//===============================================
// IExplorer Frame Programmabilty
//===============================================

// ----------------------------- HyperLink Object  -----------------------------
// IID_DHyperLink: {0002DF07-0000-0000-C000-000000000046}
[

uuid(0002DF07-0000-0000-C000-000000000046),
helpstring("HyperLink Object."),
oleautomation,
hidden,
dual

] 
interface DHyperLink : IDispatch
{

// id(0) indicates that this is the "value" member.
[id(0),propget, helpstring("Returns or sets the Friendly Name for the HyperLink."), helpcontext(0x0000)] 

HRESULT FriendlyName([out, retval] BSTR* pbstrName);
[id(0),propset, helpstring("Returns or sets the Friendly Name for the HyperLink."), helpcontext(0x0000)] 

HRESULT FriendlyName([in] BSTR bstrName);
[propget, helpstring("Returns or sets the string reference for the HyperLink."), helpcontext(0x0000)] 

HRESULT Source([out,retval] BSTR* pbstrSource);
[propset, helpstring("Returns or sets the string reference for the HyperLink."), helpcontext(0x0000)] 

HRESULT Source([in] BSTR bstrSource);
[helpstring("Jumps to the hyperlink."), helpcontext(0x0000)]

HRESULT Navigate([in,optional]VARIANT* OpenInNewWindow, [in,optional] VARIANT* NoHistory);
[propget, helpstring("Returns a pointer to creator of the object."), helpcontext(0x0000)]

HRESULT Application([out,retval] IDispatch** ppDisp);
[propget, helpstring("Returns a pointer to the IExplorer Object."), helpcontext(0x0000)]

HRESULT Parent([out,retval] IDispatch** ppDisp);
};

// ----------------------------- History Object  -----------------------------
typedef

    [
uuid(0002DF08-0000-0000-C000-000000000046),
helpstring("Constants for DInternetHistory")

]
enum HlinkIDConstants {

[helpstring("Previous Item")] hlidPrevious = 0,
[helpstring("Next Item")] hlidNext = 0xFFFFFFFF,

© Microsoft Corporation, 1995. All Rights Reserved.



Sweeper Programmability Overview Page 6

[helpstring("Current Item")] hlidCurrent = 0xFFFFFFFE,
[helpstring("Last Item")] hlidStackBottom = 0xFFFFFFFD,
[helpstring("First Item")] hlidStackTop = 0xFFFFFFFC

} HlinkIDConstants;

// IID_DInternetHistory: {0002DF04-0000-0000-C000-000000000046}
[

uuid(0002DF04-0000-0000-C000-000000000046),
helpstring("Internet History Object."),
helpcontext(0x0000),
oleautomation,
hidden,
dual

] 
interface DInternetHistory : IDispatch
{

// id(0) indicates that this is the "value" member.
[id(0), helpstring("Returns a specific Hyperlink object either by HLID or name."), helpcontext(0x0000)] 

HRESULT Item([in] VARIANT* Index, [out, retval] VARIANT* pVarResult);
        [helpstring("Adds a Hyperlink to the collection"), helpcontext(0x0000)] 

HRESULT Add(
                        [in] DHyperLink* HLink, 

                        [in, optional] VARIANT* Key, 
                        [in, optional] VARIANT* Before, 
                        [in, optional] VARIANT* After);

        [helpstring("Returns the number of Hyperlinks in the collection"), helpcontext(0x0000)] 
HRESULT Count([out,retval] long* plCount);

        [helpstring("Removes a Hyperlink from a Collection object"), helpcontext(0x0000)]
HRESULT Remove([in] VARIANT* Index);

[id(DISPID_NEWENUM), restricted, propget]
HRESULT _NewEnum([out, retval] IUnknown** ppUnk);

[propget, helpstring("Returns a pointer to the IExplorer Object."), helpcontext(0x0000)]
HRESULT Application([out,retval] IDispatch** ppDisp);

[propget, helpstring("Returns a pointer to creator of the object."), helpcontext(0x0000)]
HRESULT Parent([out,retval] IDispatch** ppDisp);

};

// CLSID_StdHlinkHistory
[

uuid(0002DF02-0000-0000-C000-000000000046),
helpstring("Internet History Object")

]
coclass HlinkHistory
{

[default] interface DInternetHistory;
};

// ----------------------------- IExplorer Frame Object  -----------------------------
// IID_DExplorer: {0002DF05-0000-0000-C000-000000000046}
[

uuid(0002DF05-0000-0000-C000-000000000046),
helpstring("IExplorer Frame Object."),
helpcontext(0x0000),
hidden,
oleautomation,
dual

] 
interface DExplorer : IDispatch
{

// Standard OLE Automation required methods and properties
// id(0) indicates that this is the "value" member.
[id(0), propget, helpstring("Returns name of the application."), helpcontext(0x0000)]

HRESULT Name([out,retval] BSTR* pbstrName);
[propget, helpstring("Returns the full pathname to the IExplorer executable."), helpcontext(0x0000)]

HRESULT FullName([out,retval] BSTR* pbstrFullName);
[propget, helpstring("Returns a pointer to the IExplorer Object."), helpcontext(0x0000)]

HRESULT Application([out,retval] IDispatch** ppDisp);
[propget, helpstring("Returns a pointer to the IExplorer Object."), helpcontext(0x0000)]

HRESULT Parent([out,retval] IDispatch** ppDisp);

© Microsoft Corporation, 1995. All Rights Reserved.



Sweeper Programmability Overview Page 7

[propget, helpstring("Determines whether IExplorer is visible or hidden."), helpcontext(0x0000)] 
HRESULT Visible([out, retval] boolean* pBool);

[propput, helpstring("Determines whether IExplorer is visible or hidden."), helpcontext(0x0000)] 
HRESULT Visible([in] boolean Value);

[propget, helpstring("Returns the active Document."), helpcontext(0x0000)]
HRESULT Document([out,retval] IDispatch** ppDisp);

[helpstring("Exits IExplorer and closes the open document."), helpcontext(0x0000)] 
HRESULT Quit();

// IExplorer specific methods and properties
[helpstring("Opens a file."), helpcontext(0x0000)] 

HRESULT Open( [in] BSTR Source);
[helpstring("Prints the current document."), helpcontext(0x0000)] 

HRESULT PrintOut([in] long What, [in] VARIANT Numbering, [in, optional] VARIANT FirstPage, [in, 
optional] VARIANT Sections, [in, optional] VARIANT FileName, [in, optional] VARIANT PrinterName, 
[in, optional] VARIANT DriverName, [in, optional] VARIANT NoPrinting);
[helpstring("Navigates to a hyperlink."), helpcontext(0x0000)] 

HRESULT Navigate([in]DHyperLink* Hlink, 
[in,optional]VARIANT* OpenInNewWindow, 
[in,optional] VARIANT* NoHistory);

[helpstring("Navigates to the previous item in the history list."), helpcontext(0x0000)] 
HRESULT GoBack();

[helpstring("Navigates to the next item in the history list."), helpcontext(0x0000)] 
HRESULT GoForward();

[helpstring("Go home/start page."), helpcontext(0x0000)] 
HRESULT GoHome();

[helpstring("Stops opening a file."), helpcontext(0x0000)] 
HRESULT Stop();

[helpstring("Refreshes the current file."), helpcontext(0x0000)] 
HRESULT Refresh();

[propget, helpstring("Returns the history list."), helpcontext(0x0000)] 
HRESULT History([out, retval] DInternetHistory** ppDInternetHistory);

[propget, helpstring("Returns the favorites list."), helpcontext(0x0000)] 
HRESULT Favorites([out, retval] DInternetHistory** ppDInternetHistory);

[propget, helpstring("Returns the the settings object."), helpcontext(0x0000)] 
HRESULT Settings([out, retval] DInternetSettings** ppDInternetSettings);

};

// IID_ExplorerEvents: {0002DF06-0000-0000-C000-000000000046}
[

uuid(0002DF06-0000-0000-C000-000000000046),
helpstring("IExplorer Frame Events."),
helpcontext(0x0000),
hidden,
oleautomation,
dual

] 
interface ExplorerEvents : IDispatch
{

[helpstring("Allows the recipient to cancel the download."), helpcontext(0x0000)] 
HRESULT Downloading([in,out]OLE_CANCELBOOL* Cancel);

};

// CLSID_IExplorer
[

uuid(0002DF01-0000-0000-C000-000000000046),
helpstring("IExplorer Object")

]
coclass IExplorer
{

[default] interface DExplorer;
        [default, source] interface ExplorerEvents;

};

};

© Microsoft Corporation, 1995. All Rights Reserved.



Sweeper Programmability Overview Page 8

Appendix A: Assigned GUIDs
The following range of 256 GUIDs has been generated for use by Sweeper.  

0002DF00-0000-0000-C000-000000000046 through 0002DFFF-0000-0000-C000-000000000046
Any allocations out of this range should be documented in this appendix.

GUID Symbolic Name Description
0002DF00-... n/a Type Library ID for the Sweeper Type Library
0002DF01-... CLSID_IExplorer The class ID for IExplorer
0002DF02-... CLSID_StdHlinkHistory The class ID for the History object.
0002DF03-... CLSID_StdHTMLDocObject The class ID for the HTML DocObject object.
0002DF04-... IID_DInternetHistory Implemented by CLSID_StdHlinkHistory

0002DF05-... IID_DExplorer The primary dispinterface for the Internet Explorer 
Frame.

0002DF06-... IID_DExplorerEvents The primary source dispinterface for the Internet Ex-
plorer Frame (it's events).

0002DF07-... IID_DHyperLink Automation compatible interface to a hyperlink ob-
ject.

0002DF08-... typedef enum HlinkConstants The HLID constants.
0002DF09-... CLSID_StdHyperLink The class ID for the standard HyperLink object.
0002DF0A-... IID_DInternetSettings Automation compatible interface to the system wide

Internet settings.
0002DF0B-... IID_DInternetMediaTypes Automation compatible interface to the system wide

Internet media types settings (MIME types).
0002DF0C-... CLSID_StdInternetMediaTypes The class ID for the standard media types manage-

ment object.
0002DF0D-... IID_DInternetMediaType Automation compatible interface for a media type 

object.

© Microsoft Corporation, 1995. All Rights Reserved.


	Introduction
	Issues, Ideas, and Notes

	Scenarios
	Scenario 1: Client Side Web Crawler
	Example Script

	Scenario 2: Object Interacting with Its Host Page
	Scenario 3: Automated Information Retrieval
	Scenario 4: Browser Automation
	Scenario 5: Integration with Non-Internet Applications

	Design Overview
	Appendix A: Assigned GUIDs

